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AbstractAbstract

Mechanisms of pore formation in solid during materials processinMechanisms of pore formation in solid during materials processing g 
and manufacturing are studied from experimental observations andand manufacturing are studied from experimental observations and
quantitative interpretations of behavior of a bubble trapped in quantitative interpretations of behavior of a bubble trapped in solid solid 
during solidification in this note. Formation of bubbles is resuduring solidification in this note. Formation of bubbles is resulted from lted from 
supersaturation of the dissolved gas in the liquid ahead of the supersaturation of the dissolved gas in the liquid ahead of the 
solidification front. The pores in solids are widely encounteredsolidification front. The pores in solids are widely encountered in microin micro--
electroelectro--mechanical systems (MEMS), manufacturing, materials and mechanical systems (MEMS), manufacturing, materials and 
bioscience fields. To facilitate analysis, the development of thbioscience fields. To facilitate analysis, the development of the bubble e bubble 
or pore in solid can be classified into five regimes: (1) nucleaor pore in solid can be classified into five regimes: (1) nucleation on the tion on the 
solidification front, (2) spherical growth of the bubble, (3) sosolidification front, (2) spherical growth of the bubble, (3) solidification lidification 
raterate--controlled elongation, (4) disappearance of the bubble in the socontrolled elongation, (4) disappearance of the bubble in the solid, lid, 
and (5) formation of the pores. Owing to quite different and irrand (5) formation of the pores. Owing to quite different and irregular egular 
pore shapes, systematical investigations of complicated bubble pore shapes, systematical investigations of complicated bubble 
dynamics in the solid during freezing are becoming important anddynamics in the solid during freezing are becoming important and
challenging issues. Some of analyses, models and future topics achallenging issues. Some of analyses, models and future topics are re 
presented in this work.presented in this work.
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Chalmers (1959): Wormholes due to air supersaturation in water aChalmers (1959): Wormholes due to air supersaturation in water at t 
solidification front are observed and interpreted from solute disolidification front are observed and interpreted from solute diffusion ffusion 
viewpoint.viewpoint.
GrigorenkoGrigorenko (1970): Pores in welds occur for supersaturation ratio at S(1970): Pores in welds occur for supersaturation ratio at S--L L 
interface greater than unity.interface greater than unity.
Wilcox and Wilcox and KuoKuo (1973): Bubble nucleation and growth ahead of  (1973): Bubble nucleation and growth ahead of  
solidification front of solidification front of multicomponentmulticomponent solutions are interpreted from solutions are interpreted from 
momentum balance, solute transport, segregation and momentum balance, solute transport, segregation and physicophysico--chemical chemical 
theories. theories. 
VasconcellosVasconcellos and Beech (1975): Blowhole shapes are observed and and Beech (1975): Blowhole shapes are observed and 
explained from solute profile in ice/water/carbon dioxide systemexplained from solute profile in ice/water/carbon dioxide system..
GeguzinGeguzin and and DzyubaDzyuba (1977): The bubbles observed arise chiefly in the (1977): The bubbles observed arise chiefly in the 
region of coarse distortion of solidification front. Volume densregion of coarse distortion of solidification front. Volume density and ity and 
mean size of pores in ice as functions of solidification rate armean size of pores in ice as functions of solidification rate are measurede measured
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ContinuedContinued

GeguzinGeguzin and and DzubaDzuba (1981): Periodic formation of pores due to (1981): Periodic formation of pores due to 
alternative accumulation and drop down of solute concentration aalternative accumulation and drop down of solute concentration are re 
observed by using the test bubble method. A bubble may not be observed by using the test bubble method. A bubble may not be 
captured or captured as an elongated pore, or isolated pore, depcaptured or captured as an elongated pore, or isolated pore, depending ending 
on relative speed between the bubble cap and solidification rateon relative speed between the bubble cap and solidification rate. . 
Wei et al. (2000): A spherical capWei et al. (2000): A spherical cap--shaped bubble with a specified shaped bubble with a specified 
contact angle is proposed to predict pore shapes in solid by acccontact angle is proposed to predict pore shapes in solid by accounting ounting 
for mass, momentum and energy transport and for mass, momentum and energy transport and physicophysico--chemical chemical 
theories. The analysis is extended by Wei and Ho (2001) to detertheories. The analysis is extended by Wei and Ho (2001) to determine mine 
selfself--consistent contact angles.consistent contact angles.
Murakami and Nakajima (2002): Spherical, columnar and periodic Murakami and Nakajima (2002): Spherical, columnar and periodic 
pores, and interfacial morphology as function of saturation, prepores, and interfacial morphology as function of saturation, pressure, ssure, 
and solidification rate are observed and measured. and solidification rate are observed and measured. 
Wei et al. (2004): In situ measurements of bubble and pore shapeWei et al. (2004): In situ measurements of bubble and pore shapes are s are 
conducted. Five stages of pore formation are proposed and modeleconducted. Five stages of pore formation are proposed and modeled. d. 
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Experimental Setup and MeasurementsExperimental Setup and Measurements
(Wei et al. 2003,2004)(Wei et al. 2003,2004)
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Bubbles trapped in solid at different times or locations near the location of 1 cm (a) 0, 
(b) 5, (c) 20, (d) 60, (e) 120, (f) 150, (g) 180, and (h) 206 s during the freezing of water 
containing oxygen gas content of 0.0041 g/100 g and temperature of the constant 
temperature sink of -250C.
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Bubbles trapped in solid at different times or locations near a Bubbles trapped in solid at different times or locations near a location of 1 cm (a) 0 s,location of 1 cm (a) 0 s,
(b) 450 s, (c) 540 s, (d) 810 s, (e) 900 s, (f) 1170 s, (9) 1350(b) 450 s, (c) 540 s, (d) 810 s, (e) 900 s, (f) 1170 s, (9) 1350 s, (h) 1440 s during the s, (h) 1440 s during the 
freezing of water containing oxygen gas content of  0.0037 g/100freezing of water containing oxygen gas content of  0.0037 g/100 g and temperature  of g and temperature  of 
--252500C of the constant temperature sink.C of the constant temperature sink.
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Temperature-Time Diagrams for Different Cooling 
Temperatures



Solidification Front 
Location –Time Diagram

Concentration Profile –
Time Diagram
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In Situ Measurement of Pore Shapes



Nucleation on solidification frontNucleation on solidification front
Spherical growthSpherical growth
Solidification rateSolidification rate--controlled elongationcontrolled elongation
Disappearance of the bubbleDisappearance of the bubble
Pore formation in solidPore formation in solid
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Suggested Stages for Pore Formation Suggested Stages for Pore Formation 
(Wei et al. 2004)(Wei et al. 2004)



Bubble FormationBubble Formation

Nucleation from superNucleation from super--saturation saturation 
(Grigorenko,1970)(Grigorenko,1970)

Entrapment in highEntrapment in high--intensity intensity 
beam welding (Pastor et al. 2001)beam welding (Pastor et al. 2001)
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Nucleation of a bubble on a surface is satisfied byNucleation of a bubble on a surface is satisfied by

c
F 0,                                                       R R

R
∂Δ

≤ ≥
∂

g g sg s sg g g

where the change in Helmholtz free energy 

         F A ( )A (p p )VΔ = σ + σ − σ − −A A A A
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where terms on the right-hand side are, respectively, free energy change 
due to formations of L-G and S-G interfaces and disappearance of S-L 
interface, and volumetric free energy change due to bubble formation

Nucleation (Ward et al. 1970; Wei et al. 2003)



ContinuedContinued
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The free energy barrier for nucleation  is
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2,g g 2,g 2, 2,(p ,T, ) (p ,T, )μ ω = μ ωA A A

The chemical potential for species j  is evaluated by

j 0 j B j(p,T) k T lnμ = μ + ω

0 j

j

where (p,T) is the chemical potential in the pure phase of species j, 
 mole fraction. 

μ
ω

gas pressure is determined by considering phase equilibriumFactor 1,η ≈



The reasons for entrapment of bubbles in liquid are still uncleaThe reasons for entrapment of bubbles in liquid are still unclear. r. 
Bubble entrapment is closely related to complicated annular vertBubble entrapment is closely related to complicated annular vertical ical 
twotwo--phase flows.phase flows.
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Model for Bubble EntrapmentModel for Bubble Entrapment
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dR
dt

ds
dt

Previous two types of 
bubble formation can be 
treated by the model 
involving three phases 
separated by two moving 
boundaries



Solution Procedure ChartSolution Procedure Chart

Mass influx

Rayleigh-Plesset Eq.or
Young-Laplace Eq.

Pore shape

Eq. of state

gp

Mass transfer 
coef.

Henry’s law Liquid domain is determined 
from energy balance 

at S-L interface

pA
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g g 1 2p p (1/ R 1/ R )= + σ +A A

wg KCp =Dh

g D wdn / dt h S(C C )∞= −

gT const.=

Fluid and energy 
Eqs. are solved

Yes No

p

converges

Next time
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∂ρ
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Continuity, fluid, energy and species eqs.

Governing Equations and Boundary Conditions

0
t
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∂
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s psn D C n D C C (1 k )n v− ∇ = − ∇ + −A A A
G G G Gi i i

Energy and concentration balances at the solidification front



Liquid pressure is hydrostatic pressure to avoid calculation of Liquid pressure is hydrostatic pressure to avoid calculation of fluid fluid 
equations.equations.
The bubble cap is spherical.The bubble cap is spherical.
The growth of bubble cap is specified.The growth of bubble cap is specified.
The liquid layer inside solid is stationary or absent.The liquid layer inside solid is stationary or absent.
HenryHenry’’s law is used to remove calculation of species transport.s law is used to remove calculation of species transport.
Solidification rate is a constant.Solidification rate is a constant.
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Simplified Models 
(Wei et al. 2000,2001,2004)



Schematic sketch givesSchematic sketch gives

NR c t tThe contact angle is found by introducing   and
 conducting integration

= −

R Rcos   s+ φ ≈

dR d cos ds(1 cos ) R
dt dt dt

φ
+ φ + =

c g in,c
3where   c r R T M  .

2
≡ ω

σ
N1 t t dscos ( 1)

c dt
− −

φ = −
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Differentiating leads toDifferentiating leads to

Spherical Growth
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which, unfortunately, exhibits singularity as denominator vanishes. 
Eq. (1)  is derived as follow:
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Solidification Rate-Controlled Elongation

Normal stress balance gives

Concentration at the bubble cap can be simply obtained by
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g ,w                p KC                                                             (5)

Henry 's law is
= A

g g
g

dp dndV
V p RT                                                (2)

dt dt dt
+ =

2dV dsr                                                                     (3)
dt dt

= π

g 2
D ,w

dn
               h r (C C )                                                (4)

dt

Mass inf lux is

∞= π −A

Equation (1) is obtained from Eq.(2) by ignoring the first term and 
substituting Eqs. (3) through (5). 

Differentiating Eq. of state

where time derivative of bubble volume is

Continued



Comparison between Prediction and MeasurementComparison between Prediction and Measurement
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i

: bubble length in solid
: contact a ngle

h : cap height
r : cap radius on solidification
     front

φ
A



Example 1. Find (a) gas pressure, (b) free energy barrier for heExample 1. Find (a) gas pressure, (b) free energy barrier for heterogeneous terogeneous 
nucleation, and (c) the critical radius of a bubble in water connucleation, and (c) the critical radius of a bubble in water containing taining 
oxygen gas of 0.0041 g/100g, as the solidification front advanceoxygen gas of 0.0041 g/100g, as the solidification front advances to 1 cm. s to 1 cm. 
Solidification subject to a cold temperature of Solidification subject to a cold temperature of --252500C starts at 20 cm below C starts at 20 cm below 
the free surface. The contact angle is assumed to be 60 deg.the free surface. The contact angle is assumed to be 60 deg.

2,
g ,sat

2, ,sat

C 0.04p p p ( 1) p 1000 9.8 (0.2 0.01) ( 1) 611
C 0.00665

  9949 Pa

− = − + = − − +

=

A
A A A

A
i i i

Ans.:  As shown in previous figure, oxygen content is 0.04 g/100g as the 
solidification front advances to 1 cm. The saturated solubility is 0.00665 
g/100g, and saturation vapor pressure is 611 Pa. 
(a) The difference in gas and hydrostatic pressures is
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(c) The critical radius is 

(b) The free energy barrier  is 

3 3
g 3 11

max 2 2
g

16 16 (0.076)F f ( ) (0.5 0.5 ) / 4 1.2 10 J
3(p p ) 3(9949)

−πσ π
Δ = φ = + = ×

−
A

A

g 5
c

g

2 2 0.076R 1.5 10 m
p p 9949

−σ
= = = ×

−
A

A

i

which agrees with experimental data (Wei et al. 2003) 
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Example 2. As extended by Ex. 1, calculate (a) solidification raExample 2. As extended by Ex. 1, calculate (a) solidification rate, (a) mass te, (a) mass 
transfer to the bubble at the time for nucleation.transfer to the bubble at the time for nucleation.
Ans.: (a) Energy balance at the solidification front is governedAns.: (a) Energy balance at the solidification front is governed byby

s
s sl

T T dsk k h
x x dt

∂ ∂
= + ρ

∂ ∂
A

A
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Owing to low liquid thermal conductivity and thick thickness of liquid, 
solidification rate can be estimated by

5s s
5

sl

k Tds 2.22 25 1.7 10 m / s
dt h x 0.011000 3.3 10

−∂
≈ ≈ = ×

ρ ∂ ×i

which agrees with experimental data.
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Continued

(b)

D

2

,w 0
5

6

in,c
10M h (C C ) 1.7 10 (0.04 0.0041) 1000

1000
6.1 10 kg / m s

−

−

= − = × −

= × −

A i i

D
5Choosing mass transfer coefficient  h  to be 1.7 10 m / s,  mass 

transfer flux to the bubble yields

−×



Example 3. Based on previous example, calculate the maximum radiExample 3. Based on previous example, calculate the maximum radius ofus of
the pore as the solidification front is advanced to 3 cm. the pore as the solidification front is advanced to 3 cm. 

g 4
i

g

2 2 0.076r 2.8 10 m
p p 2200 1000 9.8 (0.2 0.03)

−σ
= = = ×

− − −
A

A

i
i i
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6
1 5 1

,w 0 5
g D

K ds 10C C (1 ) 0.0041(1 1.7 10 ) 0.007 g /100g
R Th dt 8314 273 1.7 10

− − −
−= − = − × =

×
A i i

The maximum radius takes place at a contact angle of / 2. This givesπ

3
6

g ,w 3

 

Pa m 0.007g /100g 10 kg      p KC 10 ( ) 1000 2200 Pa
kg mole 32 1000 m

Gas pressure is
−

= = =
−A i i i

D
6 3

5

Ans.:   Henry 's constant K = 10  Pa-m / kg mole,  mass transfer coefficient h

ds / dt 1.7 10 m / s. The solut content at the bubble cap is then calculated by−

−

= = ×

which are of relevant magnitudes as experimental data.



Wormhole FormationWormhole Formation
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g g
1 2

1 1p ( )
R R

≈ σ +A

g
1 2

1 1( ) 0
R R

σ + ≈A

g

2gR(Bond number 1)ρ≡
σA

�

Balance between gas 
pressure and capillary 
pressure due to two 
principal curvatures 
results in a bubble 
having a neck.
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Force balance indicated in 
previous figure can be 
extended to interpret the 
formation of a wormhole.
Furthermore, the reason for 
an increase in bubble size 
with depth is attributed to 
an increase in hydrostatic 
pressure



Future TopicsFuture Topics

Fluid flow effects on liquid pressure in bubble growthFluid flow effects on liquid pressure in bubble growth
Gas flow in the bubbleGas flow in the bubble
More realistic shape of the bubble surfaceMore realistic shape of the bubble surface
Criterion for bubble departure and entrapmentCriterion for bubble departure and entrapment
More realistic mass transfer across bubble surfaceMore realistic mass transfer across bubble surface
Coupled solidification rate determined by energy equation togethCoupled solidification rate determined by energy equation together with er with 
Stefan boundary conditionStefan boundary condition
Interfacial morphology on bubble growthInterfacial morphology on bubble growth
Interactions between adjacent bubbles and poresInteractions between adjacent bubbles and pores
Cooling and solidification of a pore in solidCooling and solidification of a pore in solid
Coalescence of pores in solidCoalescence of pores in solid
Criterions and phenomena among spherical, columnar, and periodicCriterions and phenomena among spherical, columnar, and periodic porespores



ConclusionsConclusions

Mechanisms of pore formation in solid can be revealed from Mechanisms of pore formation in solid can be revealed from 
studying behavior of a bubble entrapped in solid during studying behavior of a bubble entrapped in solid during 
unidirectional solidification.unidirectional solidification.
Pore shapes in solid should account for transient phase changes Pore shapes in solid should account for transient phase changes in in 
three phases, three phases, physicophysico--chemical and metallurgical kinetics, mass, chemical and metallurgical kinetics, mass, 
momentum, energy and species transport.momentum, energy and species transport.
Simplified models presented in this note have provided a Simplified models presented in this note have provided a 
fundamental and crucial understanding of pore formation in solidfundamental and crucial understanding of pore formation in solid. . 
However, they still need to be improved and generalized.However, they still need to be improved and generalized.
Mechanisms of irregular shapes of pores are still unclear at theMechanisms of irregular shapes of pores are still unclear at the
present time.present time.
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